PHYSICS:ELECTROSTATICS
CHEMISTRY:SOLID STATES
BIOLOGY:REPRODUCTION IN FLOWERING PLANTS

## 2018

Please read the instructions carefully. Fou are allotted 5 minutes specifically for this purpose.

## INSTRUCTIONS

A. General:
(1) The Test Booklet conslsts of A欺 quastions. The maximum marks are 720.
(il) Each question is allothed 4 (four) marks for each correct (espepse fos, phyalcs and chemlstry and 2 marks for bilogy
(ii) Candidates will be awarded marks as stated above In Instruction N(p. (il) for correct response of each quastion, $1 / 4$ (one fourth) marks will be deducted for indicating incorrect res ponse of each quastion. No deduction from the total score will be made if no response is indicated for an liem in the answer sheet.
(W) Whenere is only one correct response for each quastion. Filing up more than one respons e in each quast on will be treated 35 wrong response and marks for wrong response will be deducted accordingly as per Instruction (il) above.
(V) Use Bluablack Ball Point Pen only for writing particulars or any marking.

OOM. Use of calculator is not allowed.
(vil) Darken the circles in the space provided only.
(vil) Use of white fuld or any other material which damages the answer sheet, is not permitted.

## Name:

Contact no:

## MEDICAL[PART(A)] <br> BIOLOGY

1. Filiform apparatus is characteristic feature of
(a) aleurone cell
(b) synergids
(c) generative cell
(d) nucellar embryo
2. In angiosperms, microsporogenesis and megasporogeneis
(a) involve meiosis
(b) occur in ovule
(c) occur in anther
(d) form gametes without further divisions.
3. Flowers are unisexual in
(a) china rose
(b) onion
(c) pea
(d) cucumber.
4. Coconut water from a tender coconut is
(a) innermost layers of the seed coat
(b) deg enerated nucellus
(c) immature embryo
(d) free nuclear endosperm
5. Which of the following fruits is parthenocarpic?
(a) Jackfruit
(b) Banana
(c) Brinjal
(d) Apple
6. Male gametophyte in angiosperms produces
(a) $\sin$ gle sperm and two vegetative cells
(b) three sperms
(c) two sperms and a vegetative cell
(d) $\sin$ gle sperm and a vegetative cell.
7. Which of the following are the important floral rewards to the animal pollinators?
(a) Floral fragrance and calcium crystals
(b) Pr otein pellicle and stigmatic exudates
(c) Colour and $l \arg e$ size of flower
(d) Nectar and pollen grains
8. Which of the following may require pollinators, but is genetically similar to autogamy?
(a) Apogamy
(b) Cleistogamy
(c) Geitonogamy
(d) Xenogamy
9. Which of the following statement is not true?
(a)The flowers pollinated by flies and bats sec rete foul odour to attract them.
(b) Honey is made by bees by digesting pollen collected from flowers
(c) Pollen grains are rich in nutrients and they are used in the form of tablets and syrups.
(d) Pollen grains of some plants cause severe allergies and bronchial affictions in some people.
10. The hilum is a scar on the
(a) fruit, where style was present
(b) seed, where micropyle was present
(c) seed, where funicle was attached
(d) fruit whereit was attached to pedicel.
11. Transmission tissue is characteristic feature of
(a) dry stigma
(b) wet stigma
(c) hollow style
(d) solid style
12. Which of the following shows isogamy with nonflagellated gametes?
(a) $S$ arg assum
(b) Ectocarpus
(c)Ulothrix
(d) Spirogyra

## 13.Geitonogamy involves

(a) fertilization of flower by the pollen from another flower of the same plant
(b) fertilization of a flower by the pollen from the same flower
(c) fertilization of a flower by the pollen from a flower of another plant in the same population
(d) fertilization of a flower by the pollen from a flower of another plant belonging to a dis $\tan t$ population.
14. An aggregate fruit is one which develops from
(a) multicarpellary syncarpous gynoecium
(b)multicarpellary apocarpus gynoecium
(c) complete inf lorescence
(c) multicarpellary sup erior $o$ var $y$.
15. Pollen tablets are available in the market for
(a) in vitro fertilization
(b) breeding programes
(c) sup plementing food
(d) ex situ conservation
16. Function of filiform apparatus is to
(a) recognize the suitable pollen at stigma
(b) stimulate division of generative cell
(c) produce nectar
(d) guide the entry of pollen tube.
17. Non-albuminous seed is produced in
(a) maize
(b) castor
(c) wheat
(b) pea
18. Meiosis takes place in
(a) gammule
(b) megaspore
(c) meiocyte
(d) conidia
19. Seed coat is not thin, membranous in
(a) groundnut
(b) gram
(c) maize
(d) coconut
20. Perisperm differs from endosperm in
(a) being a diploid tissue
(b) its formation by fusion of sec ondary nucleus with several sperms
(c) being a haploid tissue
(d) having no reserve food
21. Advantage of cleistogamy is
(a) no dependence on pollinators
(b) vivipary
(c) higher genetic var iability
(d) more vigorous off spring.
22. Megasporangium is equivalent to
(a) nucellus
(b) ovule
(c) embryo sac
(d) fruit
23. Which of the following statement is correct?
(a) Endothecium produces the microspores
(b)Tapetum nourishes the developing pollen
(c) Hard outer layer of pollen is called int ine
(d) Sporogenous tissue is haploid
24. Product of sexual reproduction generally generates
(a)new genetic combination leading to var iation
(b) $l \arg$ e bimass
(c) longer viability of seeds
(d) prolonged dormancy
25. Animal vectors are required for pollination in
(a)Vallisneria
(b) mulberry
(c) cucumber
(d) maize
26. Albuminous seeds store their reserve food mainly in
(a) endosperm
(b) cot yledons
(c) hypo cot $y l$
(d) perisperm
27. Megaspores are produced from the megaspore mother cells after
(a) mitotic division
(b) formation of thick wall
(c) differentiation
(d) meiotic division
28. Which of the following statement is correct ?
(a) Cleistogamous flowers are always autogamous
(b) Xenogamy occurs only by wind pollination
(c) Chasmogmous flowers do not open at all.
(d) Geitonogamy involves the pollen and stigma of flowers of different plants.
29. Which of the following statement is correct?
(a) Sporopollenin can be deg raded by enzymes
(b) Sporopollenin is made up of inorganic material
(c) Sporopollenin can withs $\tan d$ hightemperature as well as strong acids and alkalis.
(d) Sporopollenin can withs $\tan d$ high temperatures but not strong acids.
30. Both, autogamy, and geitonogamy are prevented in
(a) papaya
(b) cucumber
(c) castor
(d) maize.
31. An organic substance that can withstand environmental extremes and cannot be degraded by any enzyme is
(a) cuticle
(b) sporopollenin
(c) lignin
(d) cellulose.
32. Which of the following is correctly matched?
(a) Onion - bulb
(b) Ginger - Suc ker
(c) Chlamy domonas - Conidia
(d) Yeast-Zoospores.
33. Even in absence of pollinating agents seedsetting is assured in
(a) Commelina
(b) Zostera
(c) Salvia
(d) fig
34. What is the function of germ pore?
(a) Emergence of radicle
(b) Absorption of water for seed ger min ation
(c) Initiation of pollentube.
(d) Release of male gametes.
35. Which of the following statement is wrong?
(a) When pollen is shed at two - celled stage. double fertilization does not take place.
(b) Vegetative cell is $l$ arg er than generative cell.
(c) Pollen grains in some plants remain viable for months
(d) Intine is made of cellulose and pectin.
36. Plants with ovaries having only one or a few ovules. are generally pollinated by
(a)bees
(b) butterflies
(c) birds
(d) wind
37. Filiform apparatus is a characteristic feature of
(a) suspensor
(b) egg
(c) synergid
(d) zygote
38. Nucellar polyembryony is reported in species of
(a) Citrus
(b) Gossypium
(c)Triticum
(d) Brassica
39. Which of the following pollinations is autogamous?
(a) geitonogamy
(b) xenogamy
(c) chasmogamy
(d) cleistogamy
40. The " eyes" of the potato tuber are
(a) root buds
(b) flower buds
(c) shoot buds
(d) axillary buds
41. Wind pollination is common in
(a)legumes
(b) lilies
(c) grasses
(d) orchids
42. In angiosperms, functional megaspore develops into
(a) embryo sac
(b) ovule
(c) endosperm
(d) pollen sac
43. What is common between vegetative reproduction and apomixis?
(a) both are applicable to only di cot plants
(b) bothbypass the flowering phase
(c) bothoccur round the year
(d) both produce progeny identical to the parent.
44. Apomictic embryos in Citrus arise from
(a) synergids
(b)maternal sporophytic tissue in ovul
(c) antipodal
(d) diploid egg.
45.Transfer of pollen grains from the anther to the stigma of another flower of the same plant is called
(a) xenogamy
(b) geitonogamy
(c) karyogamy
(d) autogamy
46. Wind pollinated flowers are
(a) small,brightly coloured producing $l \arg e$ number of pollen grains
(b) small, producing 1 arg e number of dry pollen grains
(c) $l \arg e$ producing abundant nectar and pollen
(d) small, producing nectar and dry pollen.
47. Examine the figures (A-D) given below and select the right option out of (a-d), in which all the four structure A, B, C and D are identified correctly

48. Vegetative propagation in Pistia occurs by
(a) stolon
(b) offset
(c) runner
(d) suc ker
49. Vegetative propagation in mint occurs by
(a) offset
(b) rhizome
(c) suc ker
(d) runner
50. Which of the following pairs of plant structure has haploid number of chromosomes?
(a) nucellus and antipodal cells
(b) egg nucleus and sec ondary nucleus
(c) megaspore mother cell and antipodal cells
(d) egg cell and antipodal cells.
51. What does the filiform apparatus do at the entrance into ovule?
(a) It brings about opening of the pollen tube
(b) it guides pollen tube from a synergid to egg
(c) It helps in the entry of pollen tube int o a synergid
(d) It prevent entry of more than one pollen tube int $o$ the embryo sac.
52. Unisexuality of flowers prevents
(a) geitonogamy, but not xenogamy
(b) autogamy and geitonogamy
(c) autogamy, but not geitonogamy
(d) both geitonogamy and xenogamy.
53. Which of the following is resistant to enzyme action?
(a) pollen exine
(b) leaf cuticle
(c) cork
(d) wood fibre.
54. Male gametes in angiosperms are formed by the division of
(a) generative cell
(b) vegetative cell
(c) microspore mother cell
(d) microspore.
55. Two plants can be conclusively said to belong to the same species if they
(a) have more than 90 per cent similar genes
(b) look similar and possess identical sec ondary metabolites
(c) have same number of chromosomes
(d) can reproduce freely with each other and form seeds.
56. Which of the following is surrounded by a callose wall?
(a) male gamete
(b) egg
(c) pollen grain
(d) microspore mother cell.
57. Parthenocarpic tomato fruits can be produced by
(a) treating the plants with phenylmercuric acetate
(b) removing androecium of flowers before pollen grains are released.
(c) treating the plants with low concentration of gibberellic acid and auxins
(d) raisin $g$ the plants from vernalized seeds
58. In a cereal grain the single cotyledon of embryo is represented by
(a) coleoptile
(b) coleorhiza
(c) scutellum
(d) prophyll
59. The arrangement of the nuclei in a normal embryo sac in the dicot plants is
(a) $3+3+2$
(b) $2+4+2$
(c) $3+2+3$
(d) $2+3+3$
60. What type of placenntation is seen in sweet pea?
(a) $m$ arg inal
(b) basal
(c) axile
(d) free central
61. In which one pair both the plants can be vegetatively propagated by leaf speceis?
(a) Agave and kalanchoe
(b) Bryophyllum and kalanchoe
(c) Asparagus and Bryophyllum
(d) Chrysanthemum and Agave.
62. In a type of apomixis known as adventive embryony, embryos develop directly from the
(a) nucellus or int eguments
(b) zygote
(c) synergids or antipodals in an embryo sac
(d) accessory embryo sacs in the ovule.
63. Which one of the following represents on ovule, where the embryo sac becomes horse-shoe shaped and the funiculus and micropyle are close to each other?
(a) amphitropous
(b) circinotropous
(c) atropous
(d) anatropous
64. Through which cell of the embryo sac, does the pollen tube enter the embryo sac?
(a) egg cell
(b) persis $\tan t$ synergic
(c) deg enerated synergids
(d) central cell
65. When a diploid female plant is crossed with a tetraploid male, the ploidy of endosperm cells in the resulting seed is
(a) tetraploidy
(b) pentaploidy
(c) anatropous
(d) orthotropous
66. An ovule which becomes curved so that the nucellus and embryo sac lie at right angles to the funicle is
(a) hemitropous
(b) campylotropous
(c) anatropous
(d) orthotropous
67. Which of the following propagates through leaf tip?
(a) walking fern
(b) sprout-leaf plant
(c) Marchantia
(d) moss.
68. Anthesis is a phenomenon which refers to
(a) reception of pollen by stigma
(b) formation of pollen
(c) development of anther
(d) opening of flower bud.
69. In a flowering plant, archesporium gives rise to
(a) only the wall of the sporangium
(b) both wall and the sporogenous cells
(c) wall and the tapetum
(d) only tapetum and sporogeneous cells
70. In angiosperms pollen tube liberate their male gametes into the
(a) central cell
(b) antipodal cells
(c) egg cell
(c) synergids
71. In angiosperm all the four microspores of tetrad are covered by a layer which is formed by
(a) pectocellulose
(b) callose
(c) cellulose
(d) sporopollenin
72. What is the direction of micropyle in anatropous ovule?
(a) upward
(b) downward
(c) right
(d) left
73. Adventive embryony in Citrus is due to
(a) nucellus
(b) int eguments
(c) zygotic embryo
(d) fertilized egg.
74. In grasses what happens in microspore mother cell for the formation of mature pollen grains?
(a) one meiotic and two mitotic divisions
(b) one meiotic and one mitotic divisons
(c) one meiotic division
(d) one mitotic division.
75. Anemophily type of pollination is found in
(a)Salvia
(b) bottle brush
(c)Vallisnaria
(d) coconut
76. Endosperm is formed during the double fertilization by
(a) two polar nuclei and one male gamete
(b) one polar nuclei and one male gamete
(c) ovum and male gamete
(d) two polar nuclei and two male gametes.
77. Eight nucleated embryosac is
(a) only monosporic
(b) only bisporic
(c) only tetrasporic
(d) any of these
78. The endosperm of gymnosperm is
(a) diploid
(b) polyploid
(c) triploid
(d) haploid
79. Type of placentation in which ovary is syncarpous unilocular and ovules are on sutures is called
(a) $m$ arg inal placentation
(b) sup erficial placenatation
(c) apical placenation
(d) parietal placentatation
80. An interesting modification of flower shape for insect pollination occurs in some orchids in which a male insect mistake the pattern on the orchid flower for the female species and tries to copulate with it. thereby pollinating the flower. This phenomenon is called
(a) pseudopollination
(c) mi micry
(b) pseudoparthenocarpy
(d) pseudocopulation.
(a) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$
(b) $\frac{1}{2} a: \sqrt{3} a: \frac{1}{2} a$
(c) $\frac{1}{2} a: \frac{\sqrt{3}}{2}: \frac{\sqrt{2}}{2} a$
(d) $1 a: \sqrt{3} a: \sqrt{2} a$

## PHYSICS

1. Figure shows the electric lines of force emerging from a charged body. If the electric field at $A$ and $B$ are $E_{A}$ and $E_{B}$ respectively and if the distance between $A$ and $B$ is $r$, then

(a) $E_{A}>E_{B}$
(b) $E_{A}<E_{B}$
(c) $E_{A}=\frac{E_{B}}{r}$
(d) $E_{A}=\frac{E_{B}}{r^{2}}$

2 The separation at which the force between a proton and an electron will be 1 milli newton is
(a) $4.8 \times 10^{-13} \mathrm{~m}$
(b) $4.8 \times 10^{-11} \mathrm{~m}$
(c) $4.9 \times 10^{-9} \mathrm{~m}$
(d) $4.8 \times 10^{-7} \mathrm{~m}$
3. A metallic solid sphere is placed in a uniform electric field. The lines of force follow the path(s) shown in figure as

(a) 1
(b) 2
(c) 3
(d) 4

4 Three infinitely long charge sheet are placed as shown in figure. The electric field at point $P$ is

(a) $\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
(b) $-\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
(c) $\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$
(d) $-\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$
5. Two charges $q_{1}$ and $q_{2}$ are placed 30 cm apart, as sown in the figure. A third charge $q_{3}$ is moved along the arc of a circle of radius 40 cm
from $C$ to $D$. The change in the potential energy of the system is $\frac{q_{3}}{4 \pi \varepsilon_{0}} k$, where $k$ is

(a) $8 q_{2}$
(b) $8 q_{1}$
(c) $6 q_{2}$
(d) $6 q_{1}$

6 An electric field is expressed as $\vec{E}=2 \hat{i}+3 \hat{j}$. Find the potential difference $\left(V_{A}-V_{B}\right)$ between two points $A$ and $B$ whose position vectors are given by $r_{A}=\hat{i}+2 \hat{j}$ and $r_{B}=2 \hat{i}+\hat{j}+3 \hat{k}$.
(a) -1 V
(b) 1 V
(c) 2 V
(d) 3 V
7. The variation of potential with distance $R$ from fixed point is shown in figure. The electric filed at $R=5 \mathrm{~m}$ is

(a) $2.5 \mathrm{Vm}^{-1}$
(b) $-2.5 \mathrm{Vm}^{-1}$
(c) $0.4 \mathrm{Vm}^{-1}$
(d) $-0.4 \mathrm{Vm}^{-1}$
8. The potential field depends on $x$-and $y$-coordinates as $V=x^{2}-y^{2}$. Corresponding electric field lines in $x-y$ plane are as
(a)

(b)

(c)

(d)

9. Charge on an originally uncharged conductor is separated by holding a positively charged rod very nearby, as in figure Assume that the induced negative charge on the conductor is equal to the positive charge $q$ on the rod. Then, flux through surface $S_{1}$ is

(a) zero
(b) $q / \varepsilon_{0}$
(c) $-q / \varepsilon_{0}$
(d) none of these
10. A cylinder of length $L$ and radius $b$ has its axis coincident with the $x$-axis. The electric field in this region is $\vec{E}=\mathbf{2 0 0} \hat{i}$. Find the flux through the left end of cylinder.
(a) 0
(b) $200 \pi \mathrm{~b}^{2}$
(c) $100 \pi \mathrm{~b}^{2}$
(d) $-200 \pi b^{2}$
11. Consider the Gaussian surface that surrounds part of the charge distribution shown in figure. Then, the contribution to the electric field at point $P$ arises from charges

(a) $q_{1}$ and $q_{2}$ only
(b) $q_{3}$ and $q_{4}$ only
(c) $q_{1}, q_{2}, q_{3}$ and $q_{4}$
(d) none of the above

12 A charge $q$ is distributed uniformly on a ring of radius ' $a$ '. A sphere of equal radius ' $a$ ' is constructed with its center at the periphery of
the ring. Calculate the flux of the electric field through the surface of the sphere.
(a) $\frac{q}{3 \varepsilon_{0}}$
(b) $\frac{2 q}{3 \varepsilon_{0}}$
(c) $\frac{q}{4 \varepsilon_{0}}$
(d) $\frac{3 q}{4 \varepsilon_{0}}$

13 The electric flux for Gaussian surface $A$ that enclose the charged particles in free space is (given $\mathbf{q}_{1}=-14 \mathrm{nC}, \mathbf{q}_{2}=78.85 \mathrm{nC}, \mathrm{q}_{3}=-56 \mathrm{nC}$ )

(a) $10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(b) $10^{3} \mathrm{CN}^{-1} \mathrm{~m}^{-2}$
(c) $6.32 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(d) $6.32 \times 10^{3} \mathrm{CN}^{-1} \mathrm{~m}^{-2}$
14. If the electric flux entering and leaving an enclosed surface respectively is $\phi_{1}$ and $\phi_{2}$ the electric charge inside the surface will be
(a) $\left(\phi_{1}+\phi_{2}\right) \varepsilon_{0}$
(b) $\left(\phi_{2}-\phi_{1}\right) \varepsilon_{0}$
(c) $\left(\phi_{1}+\phi_{2}\right) / \varepsilon_{0}$
(d) $\left(\phi_{2}-\phi_{1}\right) / \varepsilon_{0}$
15. The inward and outward electric flux for a closed surface in units of $\mathrm{N}-\mathrm{m}^{2} / \mathrm{C}$ are respectively $8 \times 10^{3}$ and $4 \times 10^{3}$. Then the total charge inside the surface is [where $\varepsilon_{0}=$ permittivity constant]
(a) $4 \times 10^{3} \mathrm{C}$
(b) $-4 \times 10^{3} \mathrm{C}$
(c) $\frac{\left(-4 \times 10^{3}\right)}{\varepsilon} C$
(d) $-4 \times 10^{3} \varepsilon_{0} \mathrm{C}$
16. A positively charged ball hangs from a long silk thread. Electric field at a certain point (at the same horizontal level of ball) due to this charge is $E$. Let us put a positive test charge $q_{0}$ at this point and measure $F / q_{0}$ on this charge. Then, $E$
(a) $>F / q_{0}$
(b) $<F / q_{0}$
(c) $=F / q_{0}$
(d) none of these

Q17.Two capacitors of $2 \mu \mathrm{~F}$ and $4 \mu \mathrm{~F}$ are connected in parallel. A third capacitor of $6 \mu \mathrm{~F}$ is connected in series. The combination connected across a 12 V battery. The voltage across $2 \mu \mathrm{~F}$ capacitor is
(a) 2 V
(b) 8 V
(c) 6 V
(d) 1 V

Q18 A $40 \mu \mathrm{~F}$ capacitor in a defibrillator is charged to $3,000 \mathrm{~V}$. The energy stored in the capacitor is sent through the patient during a pulse of duration 2 ms . The power delivered to the patient is.
(A) 45 kW
(B) 360 kW
(C) 180 kW
(D) 90 kW

Q19.Consider a parallel plate capacitor of $10 \mu F$ with air filled in the gap between the plates. Now one half of the space $b / w$ the plates is filled with dielectric of dielectric constant 4, as shown fig. The capacity of the capacitor changes to
(a) $25 \mu F$
(b) $20 \mu F$
(d) $5 \mu F \mathrm{Q}$
(c) $40 \mu F$


Q20.The effective capacitance of combination of equal capacitors between points $A$ and $B$ shown in fig is

(a)C
(b) 2C
(c) 3 C
(d) $\mathrm{C} / 2$

Q21.A capacitor having capacitance 1 micro farad with air,is filled with two dielectric as shown.How many times capacitance will increase?

(a) 12
(b) 6 (c) $8 / 3$
(d) 3

Q22. Given a number of capacitors labelled as $8 \mu \mathrm{~F}-250 \mathrm{~V}$. Find the minimum number of capacitors needed to get an arrangement equivalent to $16 \mu \mathrm{~F}$ $1,000 \mathrm{~V}$.
(A) 32
(B) 16
(C) 4
(D) 64

Q23A metallic spherical shell has an inner radius $R_{1}$ and outer radius $R_{2}$. A charge is placed at the centre
of the spherical cavity. The surface charge density on the inner surface is

(a) $\frac{q}{4 \pi R_{1}^{2}}$
(b) $\frac{-q}{4 \pi R_{1}{ }^{2}}$
(c) $\frac{q^{2}}{4 \pi R_{2}{ }^{2}}$
(d) $\frac{q}{4 \pi R_{2}{ }^{2}}$

Q24.Two large thin metal plates are paralle; and close to each other .On their inner faces, the plates have surface charge densities of opposite signs and magnitude
$27 \times 10^{-22} \mathrm{Cm}^{-2}$. The electric field $\vec{E}$ in region II in between the plates is

(a) $4.25 \times 10^{-8} \mathrm{NC}^{-1}$
(b) $6.28 \times 10^{-10} \mathrm{NC}^{-1}$
(d) $3.05 \times 10^{-10} \mathrm{NC}^{-1}$
(d) $5.03 \times 10^{-10} \mathrm{NC}^{-1}$

Q25.Two charges $\pm 20 \mu \mathrm{C}$ are placed 10 mm apart.The electric field at point $P$,on the axis of the dipole 10 cm away from its centre $O$ on the side of the positive charge is

(a) $8.6 \times 10^{9} \mathrm{NC}^{-1}$
(b) $4.1 \times 10^{6} \mathrm{NC}^{-1}$
(c) $3.6 \times 10^{6} \mathrm{NC}^{-1}$
(d) $4.6 \times 10^{5} \mathrm{NC}^{-1}$

Q26.A few electric field lines for a system of two charges $Q_{1}$ and $Q_{2}$ fixed at two different points on the $x$-axis are shown in fig. These lines suggests that

(a) $\left|Q_{1}\right|>\left|Q_{2}\right|$
(b) $\left|Q_{1}\right|<\left|Q_{2}\right|$
(c) At a finite distance to the left of $Q_{1}$, the electric field is zero.
(d)At a finite distance to the right of $Q_{2}$, the electric field is net zero.
Q27.A dipole of electric dipole moment $p$ is placed in a uniform electric field of strength E.If $\theta$ is the
angle between positive directions of $p$ and $E$,then the potential energy of the electric dipole is largest when $\theta$ is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\pi$
(d)zero

Q28. A charge $\mathbf{Q}$ is placed at each of the opposite corners of a square and a charge $q$ is placed at each of the other two corners as shown in fig.If the net electrical force on $\mathbf{Q}$ is zero,then $\mathbf{Q} / \mathbf{q}$ equal

a) $-2 \sqrt{2}$
(b) -1
(c) 1
(d) $-1 / \sqrt{2}$

Q29.An electric dipole is placed at an angle of $30^{\circ}$ with an electric field of intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$.It experience a torque equal to 4 Nm . The charge on the dipole if the dipole length is 2 cm is
(a) 8 mC
(b) 4 mC
(c) 6 mC
(d) 2 mC

Q30.Four point charges are placed at the corners of a square ABCD of side 10 cm , as shown in figure. The force on a charge of $1 \mu \mathrm{C}$ placed at the centre of square is
(a) 7 N
(b) 8 N
(c) 2 N
(d) zero

## CHEMISTRY

1. Which of the following exists as covalent crystals in the solid state?
(a) Phosphorus
(b) Iodine
(c) Silicon
(d) Suluphur
2. In a face centred cubic lattice, atom A occupies the corner positions and atom $B$ occupies the face centre positions. If one atom of $B$ is missing from one of the face centred points, the formula of the compound is :
(a) $A B_{2}$
(b) $A_{2} B_{3}$
(c) $A_{2} B_{5}$
(d) $A_{2} B$
3. The fraction of the total volume occupied by the atoms present in a simple cube is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3 \sqrt{2}}$
(d) $\frac{\pi}{4 \sqrt{2}}$
4. The packing efficiency of the two-dimensional square unit cell shown in the adjoining fig is.

(a) $39.27 \%$
(b) $68.02 \%$
(c) $74.05 \%$
(d) $78.54 \%$
5. A compound $M_{p} X_{q}$ has cubic close packing (ccp ) arrangement of $X$. Its unit cell structure is shown below. The empirical formula of the compound is

(a) $M X$
(b) $M X_{2}$
(c) $M_{2} X$
(d) $M_{5} X_{14}$
6. If the unit cell of a mineral has a cubic close packed (ccp) array of oxygen atoms with $m$ fraction of octahedral holes occupied by aluminium ions and n fraction of tetrahedral holes occupied by magnesium ions, $m$ and $n$, respectively are
(a) $\frac{1}{2}, \frac{1}{8}$
(b) $1, \frac{1}{4}$
(c) $\frac{1}{2}, \frac{1}{2}$
(d) $\frac{1}{4}, \frac{1}{8}$
7. The arrangement of $\mathrm{X}^{-}$ions around $\mathrm{A}^{+}$ion in solid $A X$ is given in the fig. (not drawn to scale ). If the radius of $\mathrm{X}^{-}$is $\mathbf{2 5 0} \mathbf{~ p m}$, the radius of $\mathrm{A}^{+}$is

8. In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion ( $\mathbf{C a}^{2+}$ ) and fluoride ion ( $\mathrm{F}^{-}$) are
(a) 4 and 2
(b) 6 and 6
(c) 8 and 4
(d) 4 and 8
9. A solid compound XY has NaCl structure. If the radius of the cation is $\mathbf{1 0 0} \mathrm{pm}$, the radius of the anion ( $\mathrm{Y}^{-}$) will be
(a) 275.1
(b) 322.5 pm
(c) 241.5 pm
(d) 165.7 pm
10. A metal crystallizes with a face-centred cubic lattice. The edge of the unit cells is $\mathbf{4 0 8} \mathbf{~ p m}$. The diameter of the metal atom is
(a) 228 pm
(b) 408 pm
(c) 144 pm
(d) 204 pm
11. Sodium metal crystallizes in a body-centred cubic lattice with a unit cell edge of $4.29 \mathrm{~A}^{\circ}$. The radius of sodium metal is approximately
(a) $5.72 \mathrm{~A}^{\circ}$
(b) $0.93 A^{\circ}$
(c) $1.86 A^{\circ}$
(d) $3.22 A^{\circ}$
12. A given metal crystallizes out with a cubic structure having edge length of $\mathbf{3 6 1} \mathbf{~ p m}$. If there are four metal atoms in one unit cell, what is the radius of one atom?
(a) 80 pm
(b) 108 pm
(c) 40 pm
(d) 127 pm
13. CsCl crystallises in body-centred cubic lattice. If ' $a$ ' is its edge length then which of the following expressions is correct?
(a) $r_{c s}+r_{C l-}=\sqrt{3} a$
(b) $r_{c s}+r_{C l-}=3 a$
(c) $r_{c s}+r_{C l-}=\frac{3 a}{2}$
(d) $r_{c s}+r_{C l-}=\frac{\sqrt{3}}{2} a$
14. If ' $a$ ' stands for the edge length of the cubic system: simple cubic, body centred cubic and facecentred cubic, then the ratio of the radii of the spheres in these systems will be respectively
(a) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$
(b) $\frac{1}{2} a: \sqrt{3} a: \frac{1}{2} a$
(c) $\frac{1}{2} a: \frac{\sqrt{3}}{2}: \frac{\sqrt{2}}{2} a$
(d) $1 a: \sqrt{3} a: \sqrt{2} a$
15. A metal has a fcc lattice. The edge length of the unit cell is 4.4 pm. The density of the metal is 2.72 g $\mathrm{cm}^{-3}$. The molar mass of the metal is $\left(\mathrm{N}_{\mathrm{A}}\right.$, Avogadro's constant $=6.02 \times 10^{\mathbf{2 3}} \mathbf{~ m o l}^{-1}$ )
(a) $40 \mathrm{~g} \mathrm{~mol}^{-1}$
(b) $30 \mathrm{gmol}^{-1}$
(c) $27 \mathrm{~g} \mathrm{~mol}^{-1}$
(d) $20 \mathrm{~g} \mathrm{~mol}^{-1}$
16. Lithium has a bec structure. Its density is 530 kg $\mathrm{m}^{-3}$ and its atomic mass is $6.94 \mathrm{~g} \mathrm{~mol}^{-1}$ Calculate the edge length of the unit cell of lithium metal ( $\mathrm{N}_{\mathrm{A}}=$ $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ )
(a) 527 pm
(b) 264 pm
(c) 154 pm
(d) 352 pm
17. If NaCl is doped with $10^{-4} \mathrm{~mol} \%$ of $\mathrm{SrCl}_{2}$, the concentration of cation vacancies will be $\left(\mathrm{N}_{\mathrm{A}}=6.02 \times\right.$ $10^{23} \mathrm{~mol}^{-1}$ )
(a) $6.02 \times 10^{14} \mathrm{~mol}^{-1}$
(b) $6.02 \times 10^{15} \mathrm{~mol}^{-1}$
(c) $6.02 \times 10^{16} \mathrm{~mol}^{-1}$
(d) $6.02 \times 10^{17} \mathrm{~mol}^{-1}$
18. Experimentally. It was found that a metal oxide has formula $M_{0.98} O$. Metal $M$ is present as $M^{2+}$ and $\mathbf{M}^{3+}$ in its oxide. Fraction of the metal which exists as $\mathbf{M}^{3+}$ would be
(a) $5.08 \%$
(b) $7.01 \%$
(c) $4.08 \%$
(d) $6.05 \%$
19. Which of the following compound is metallic and ferromagnetic?
(a) $\mathrm{CrO}_{2}$
(b) $\mathrm{VO}_{2}$
(c) $\mathrm{MnO}_{2}$
(d) $\mathrm{TiO}_{2}$
20. The correct statement (s) regarding defects in solids is (are)
(a) Frenkel defects are usually favoured by a very small difference in the sizes of the cation and anion
(b) Frenkel defect is a dislocation defect
(c)Trapping of an electron in the lattice leads to
the formation of $F$-centre
(d) Schottky defects have no effect on the physical properties of solids
21. With respect to graphite and diamond, which of the following statement (s) given below is (are) correct?
(a) Graphite is harder than diamond
(b) Graphite is higher electrical conductivity than diamond
(c) Graphite has higher thermal conductivity than diamond
(d) Graphite has higher C - C bond order than diamond
22. The Correct Statement for cubic close packed (ccp) three-dimensional structure is (are)
(a) The number of neighbours of an atom
present in the topmost layer is 12
(b)The efficiency of the atom packing is $74 \%$
(c)The number of octahedral and tetrahedral voids per atom are 1 and 2 respectively
(d) The unit cell edge length is $2 \sqrt{2}$ times the radius of the atom.
23. In the laboratory, sodium chloride is made by burning sodium in the atmosphere of chlorine. The salt obtained is yellow in colour. The cause of yellow colour is
(a) presence of $\mathrm{Na}^{+}$ions in the crystal lattice
(b) presence of $\mathrm{Cl}^{-}$ions in the crystal lattice
(c) presence of electrone in the crystal lattice
(d) presence of face - centred cubic crystal lattice
24. In fcc lattice of NaCl structure, if the diameter of $\mathrm{Na}^{+}$is x , and the radius of $\mathrm{Cl}^{-}$is y , then the edge length of $\mathbf{N a C l}$ in the crystal is
(a) $2 x+2 y$
(b) $x+y$
(c) $x+2 y$
(d) none of these
25. Gold has a close-packed structure which can be viewed as spheres occupying 0.74 of the total volume. What is the radius of gold ion if density of gold is $19.3 \mathrm{~g} / \mathrm{cc}$ ? ( $\mathrm{Au}=197 \mathrm{amu}$ )
(a) $1.439 \times 10^{-8} \mathrm{~cm}$
(b) $4.07 \times 10^{-8} \mathrm{~cm}$
(c) $1.017 \times 10^{-8} \mathrm{~cm}$
(d) $8.23 \times 10^{-8} \mathrm{~cm}$
26. Ferrous oxide has a cubic structure. The length of edge of the unit cell is $5 \mathrm{~A}^{\circ}$. The density of the oxide is $4.0 \mathrm{~g} \mathrm{~cm}^{-3}$ Then the number of $\mathrm{Fe}^{2+}$ and $\mathrm{O}^{2-}$ ions present in each unit cell will be
(a) four $\mathrm{Fe}^{2+}$ and four $\mathrm{O}^{2-}$
(b) two $\mathrm{Fe}^{2+}$ and two $\mathrm{O}^{2-}$
(c) four $\mathrm{Fe}^{2+}$ and two $\mathrm{O}^{2-}$
(d) $\mathrm{twoFe}^{2+}$ and four $\mathrm{O}^{2-}$
27. KCl crystallizes in the same type of lattice as NaCl does. If $\mathbf{r}_{\mathrm{Na}} / \mathbf{r}_{\mathbf{k}} \mathbf{0 . 7}$ then the ratio of the sides of unit cell for KCl to that for NaCl is
(a) 1.1
(b) 0.8
(c) 0.4
(d) 1.7
28. The arrangement of the first two layers, one above the other, in hcp and ccp arrangement is
(a) exactly same in both cases
(b) partly same and partly different
(c) different fromeach other
(d) nothing definite
29. In a cubic unit cell, seven of eight corner are occupied by atom $A$ and corners of faces are occupied by $B$. The general formula of the substance having this type of structure would be
(a) $A_{7} B_{6}$
(b) $A_{7} B_{24}$
(c) $A_{7} B_{12}$
(d) $A_{7} B_{36}$
30. Certain crystals produce electric signals on application of pressure. This phenomenon is called
(a) pyroelectricity
(b) ferroelectricity
(c) piezoelectricity
(d) ferrielectricity

## NEET Answer key <br> Biology Answer key

| 1 | 2 | 3 | 4 |  |  | 6 | 7 |  | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | a | d | d | b | c |  | d |  | c | b | c |
| 11 | 12 | 13 | 14 |  | 15 | 16 | 17 |  | 18 | 19 | 20 |
| d | d | a | b | c | d |  | d | c | c | d | a |
| 21 | 22 | 23 | 2 |  |  | 26 |  |  | 28 | 29 | 30 |


| a | a | b | a | c | a | d | a | c | a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 32 | 33 | 34 |  | 36 | 37 | 38 | 39 | 40 |
| b | a | a | c | a | d | c | a | d | d |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| c | a | d | b | b | b | c | b | c | d |
| 51 | 52 |  |  | 5 |  |  |  |  | 60 |



| 1 | PHYSICS Answer key |  |  |  |  |  |  |  |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 |  |  |  | 6 |  |  | 8 | 9 |  |
| a | a | d | b | a | a | a | a |  | b | d |
| 11 | 12 |  | 13 | 14 | 16 | 17 | 18 |  | 19 | 20 |
| c | a | a | b | d | a | c | d |  | a | b |
| 21 | 22 |  | 23 | 25 | 26 | 27 |  | 28 | 29 | 30 |
| b | a | b | c | c | a,d | c |  | a | d | d |

## CHEMISTRY Answer key



